Deep 21

OVERVIEW

True Oak Deep 21 is a 76mm × 21mm corrugated profile suitable for any roofing, walling or cladding applications. This fuller, deeper profile is crafted for a timeless heritage look.

COVERAGE LENGTH

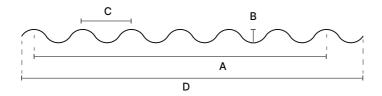
762mm / 680mm Nominal Cover

SPRING CURVING

15000mm Minimum Radius

MINIMUM ROOF PITCH

3 Degrees


MECHANICAL CURVING

150mm Minimum Radius

RIB HEIGHT

21mm

PROFILE

- A = 762.0mm +/-2mm
- B = 21.3mm
- C = 76.2 mm
- D = 838.0mm

* Visit revbydesign.com.au for CAD & Revit Files

AVAILABILITY

LOCATION

Q AUSTRALIA WIDE

MATERIAL & GUAGE

- 0.42 BMT
- 0.48 BMT

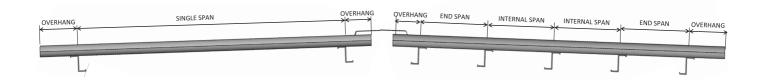
- Nexalume[™] AZ150
- NEXTEEL NextSTAR™
- NEXTEEL NextSTAR™ Ultra
- NEXTEEL NextSTAR™ Matt
- Heritage Galvanised

- Zincalume® AM150
- COLORBOND® Steel
- COLORBOND® Steel Ultra
- COLORBOND® Steel Matt

RevSpec — True Oak Deep 21

NON-CYCLONIC SPAN TABLE

ROOF SHEETING NON-CYCLONIC SPAN TABLE


ROOF SPAN	0.42 BMT	0.48 BMT
Single Span	1175	1500
End Span	1350	1700
Internal Span	1500	2000
Unstiffened Overhang	200	200
Stiffened Overhang	420	480

WALL CLADDING NON-CYCLONIC SPAN TABLE

WALL SPAN	0.42 BMT	0.48 BMT
End Span	1900	2200
Internal Span	2300	2800
Unsupported Cantileaver	300*	300*

^{*} Rivet required, securing the overlap, 50mm from the end of the sheet

SPAN DEFINITIONS

DESIGN PARAMETERS

Region	А
Terrain Category	2

Height	10 metre
Vz	45 m/sec
q*u	1.215 kPa
qs	0.821 kPa
Cp.e	-0.65
Ср	0.2

End Bay
K ₁ = 2.0
∑C = -1.50
Pu = 1.82 kPa
Ps = 1.23 kPa

NON-CYCLONIC SERVICEABILITY & STRENGTH

NON-CYCLONIC TRUE OAK DEEP 21 0.42 BMT

Non-Cyclonic Wind Uplift Resistence - Service and Strength Limit State Design

End Spar

Internal Span

Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)	Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)
900	1.46	6.69	1200	1.40	6.41
1200	1.17	4.66	1500	1.19	4.90
1500	0.95	3.25	1800	1.02	3.67
1800	0.77	2.26	2100	0.87	2.63

NON-CYCLONIC TRUE OAK DEEP 21 0.48 BMT

Non-Cyclonic Wind Uplift Resistence - Service and Strength Limit State Design

Single Span

Internal Span

End Span

		-						
Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)	Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)	Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)
1200	2.77	10.93	900	2.15	6.46	1200	1.98	6.11
1500	1.44	9.30	1200	1.51	4.92	1500	1.51	4.95
1800*	0.84	7.96	1500	1.14	3.72	1800	1.21	3.99
2100*	0.54	6.84	1650	1.02	3.21	2100	1.01	3.19

^{*} Spans Exceed Trafficable Point Load Limits

RAINWATER TABLES

Maximum roof lengths (m) for drainage measured from ridge to gutter, no allowance has been made for penetrations or water diversion.

CROSS SECTIONAL AREA COMPARISON PER PROFILE

EFFECTIVE CROSS-SECTIONAL AREA (m²/m)				
Corrugated 16mm	1.249 x 10 ⁻³			
True Oak 21mm	2.520 x 10 ⁻³			
True Oak 'Super 5'	6.416 x 10 ⁻³			
Rev 5	11.85 x 10 ⁻³			
Rev 5 Plus	15.29 x 10 ⁻³			
RevKlip 700	13.91 x 10 ⁻³			
RevSpan 700	4.589 x 10 ⁻³			

TRUE OAK DEEP 21 RAINFALL CAPACITY

RAINFALL CAPACITY (mm/hr)							
ROOF SLOPE (DEGREES)	100	150	200	250	300	350	400
1	24	16	12	9	8	6	6
2	34	22	17	13	11	9	8
3	41	27	20	16	13	11	10
4	48	32	24	19	16	13	12
5	54	36	27	21	18	15	13

RELATIVE DISCHARGE X 10-6m³ / s / m PER PROFILE							
SLOPE (DEGREES)	CORRUGATED 16mm	TRUE OAK 21mm	TRUE OAK 'SUPER 5'	REV 5	REV 5 PLUS	REVKLIP 700	REVSPAN 700
1	103.3	286.1	1227.1	4018.5	5932.9	4974.0	1034.3
2	146.1	404.6	1736.2	5682.9	8390.4	7034.3	1462.8
5	231.0	639.8	2754.2	8985.6	13266.5	11122.3	2312.9
10	326.8	904.8	3882.4	12707.5	18761.6	15729.3	3270.9
15	400.2	1108.1	4752.9	15563.5	22978.2	19264.5	4006.0

RAINWATER INTENSITY PER LOCATION

RAINFALL INTENSITY BY LOCATION (mm / hr)					
	Average recurrance (years)				
Locality	Once in 20	Once in 100			
AUSTRAL	IAN CAPITAL TE	RRITORY			
Canberra	143	193			
NE	W SOUTH WAL	ES			
Albury	139	180			
Broken Hill	143	219			
Newcastle	226	316			
Sydney	200	262			
NOF	RTHERN TERRITO	ORY			
Alice Springs	166	239			
Darwin	233	274			
	QUEENSLAND				
Brisbane	234	305			
Cairns	229	278			
Mackay	250 316				
Townsville	235 300				

RAINFALL INTENSITY BY LOCATION (mm / hr)						
	Average recu	rrance (years)				
Locality	Once in 20	Once in 100				
S	OUTH AUSTRAL	IA				
Adelaide	125	187				
Gawler	110	158				
Mt Gambier	103	144				
Murray Bridge	120	178				
Yorketown	155	166				
	TASMANIA					
Hobart	85	116				
Launceston	90	121				
	VICTORIA					
Ballarat	131	188				
Geelong	102	144				
Melbourne	132	187				
Mildura	142	218				

RAINFALL INTENSITY BY LOCATION (mm / hr)				
	Average recurrance (years)			
Locality	Once in 20 Once in 100			
WESTERN AUSTRALIA				
Albany	125	178		
Broome	232	287		
Bunbury	147	199		
Geraldton	138	193		
Perth	130	172		

^{*}Rainwater Intensity Data obtained from the National Construction Code and the Bureau of Meterology.

MASSES

COLORBOND® STEEL AM100

	0.42 BMT	0.48 BMT	
kg/lm	3.39	3.86	
kg/m²	4.45	5.07	

NEXTEEL™ AM100

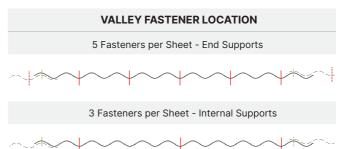
	0.42 BMT	0.48 BMT	
kg/lm	3.39	3.86	
kg/m²	4.45	5.07	

HERITAGE GALVANISED

	0.42 BMT	0.48 BMT	
kg/lm	3.92	4.39	
kg/m²	5.15	5.76	

ZINCALUME® AM125

	0.42 BMT	0.48 BMT	
kg/lm	3.48	3.94	
kg/m²	4.57	5.17	


NEXALUME™ AZ150

	0.42 BMT	0.48 BMT	
kg/lm	3.48	3.94	
kg/m²	4.57	5.17	

FASTENER SPACING NON-CYCLONIC

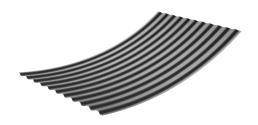
As per NCC ABCB Housing Provisions Table 7.2.5, maximum roof lengths (m) for drainage measured from ridge to gutter, no allowance has been made for penetrations or water diversion.

NOTE: Side lap fasteners are optional when using 5 fasteners per sheet, but are a requirement when only using 3 fasteners per sheet for valleys.

SUGGESTED NON-CYCLONIC PIERCE FIXING

SUGGESTED TRUE OAK DEEP 21 NON CYCLONIC PIERCE FIXING				
ТҮРЕ	FIXING TO STEEL (UP TO 1.9mm)	FIXING TO STEEL (2.0mm - 3.5mm)	FIXING TO METAL BATTENS (0.55 - 1.0mm)	FIXING TO TIMBER
Crest Fixed	12-14×35mm Metal Teks	12-14×35mm Metal Teks	M6-11×50mm Roof Zips	M6-11×50mm Roof Zips
Valley Fixed	M6-11×25mm or 10-16×16mm Metal Teks Hex Head with Seal	12-14×35mm Metal Teks	M6-11×25mm or 10-16×16mm Metal Teks Hex Head with Seal	M6-11×25mm Hex Head with Seal or T17×25mm Hex Head

NOTE: After exposure of cladding to extreme wind event, it is recommended that inspection to be performed to confirm cladding integrity.


INSULATION OPTIONS

Roof Blanket with a thickness up to 100mm can be installed under True Oak Deep 21 without the requirement of a thermal spacer, the length of the fasteners may have to increase to compensate for the thickness of the insulation.

Noting the energy efficiency requirements of non-residential buildings may call for a thermal spacer on blanket of all sizes, this is governed by Section J of the National Construction Code.

True Oak Deep 21

MECHANICAL CURVING

True Oak Deep 21 can be mechanically curved in the factory, however the following should be noted:

- · Cover is 762mm
- Minimum Radius of 150mm

STANDARD SPECIFICATION

COLORBOND® STEEL AM100

RELEVANT FOR COLORBOND® STEEL, COLORBOND® MATT STEEL PRODUCTS

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® Steel AM100 Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology - AS 1397:2021

COATING

AM100 = 100g per m² Minimum Metallic Coating Mass

PRIMER

Nominal 5µm Universal Corrosion Inhibitive Primer

PAINT

Nominal 20µm Finish Coat AS/NZS 2728:2013 Type 3

PROTECTIVE PLASTIC Nominal 50µm CORSTRIP® (if required)

COLORBOND® STEEL AM150

RELEVANT FOR COLORBOND® STEEL ULTRA PRODUCTS

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® AM150 Ultra Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology - AS 1397:2021

COATING

AM150 = 150g per m² Minimum Metallic Coating Mass

PRIMER

Nominal 5µm Universal Corrosion Inhibitive Primer

PAINT

Nominal 20µm Finish Coat AS/NZS 2728:2013 Type 3

PROTECTIVE PLASTIC Nominal 50µm CORSTRIP® (if required)

NEXTEEL™ AM100

RELEVANT FOR NEXTSTAR™, NEXTSTAR™ MATT STEEL PRODUCTS

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. NEXTEEL $^{\text{M}}$ AM100 Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728 Type 4.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING AM100 = 100g per m² Minimum Metallic Coating Mass

PRIMER Nominal 5µm Polyester

PAINT Nominal 20µm Advanced Durability Polyester AS/NZS 2728 Type 4

PROTECTIVE PLASTIC Nominal 50µm NextSTRIP (if required)

NEXTEEL™ AM150

RELEVANT FOR NEXTSTAR™ ULTRA STEEL PRODUCTS

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. NEXTEEL™ AM150 Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728 Type 4.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING AM150 = 150g per m² Minimum Metallic Coating Mass

PRIMER Nominal 5µm Polyester

PAINT Nominal 20µm Advanced Durability Polyester AS/NZS 2728 Type 4

PROTECTIVE PLASTIC Nominal 50µm NextSTRIP (if required)

RevSpec — True Oak Deep 21

STANDARD SPECIFICATION

ZINCALUME® AM125

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. Zincalume AM125 Substrate compliance AS 1397:2021, 125g per square metre minimum Metallic Coating Mass.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING AM125 = 125g per m² Minimum Metallic Coating Mass

NEXALUME™ AZ150

Steel base thickness (0.42 or 0.48) with a Hot-Dipped Aluminium Zinc Magnesium Alloy Coating. Nexalume AZ150 Substrate compliance AS 1397:2021, 150g per square metre minimum Metallic Coating Mass.

SUBSTRATE Hot-Dipped Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING AZ150 = 150g per m² Minimum Metallic Coating Mass

MARINE CLASSIFICATION

Class 1 (ISO 9223 Category C1): Rural areas far inland and remote from marine or industrial influence

Class 2 (ISO 9223 Category C2): Inland areas remote from the coast or areas of pollution

Class 3 (ISO 9223 Category C3): Coastal areas with low salinity

Class 4 (ISO 9223 Category C4): Severe marine which begins between 100m - 400m from breaking surf or 100m from calm marine.

Class 5 (ISO 9223 Category C5): Very severe marine: Close to breaking surf, typically 0 to 100m from breaking surf/exposed marine.

Class CX: Extreme (as per AS 4312:2019): Rare classification, reserved for offshore structures and the most severe sea conditions

ISO 9223:2012

 ${\it Corrosion of metals and alloys-Corrosivity of atmospheres-Classification, determination and estimation.}$