RevSpan

OVERVIEW

RevSpan is an innovative product boasting improved lapping and capillary action. Its Trapezoidal profile features a modern and square design, the perfect choice for cladding options.

\sim	O١			ח	Λ.	\sim	1/	V	חו	т	L	
v	v	v	ᆮ	π.	н	U	٧	٧	ı		г	1

700mm Nominal

MINIMUM ROOF PITCH

3 Degrees

MECHANICAL CURVING

Not Available

SPRING CURVING

6000mm Minimum Radius

PROFILE

- A = 700.0mm +/- 2mm
- B = 87.5 mm
- C = 24.0 mm
- D = 767.9mm

AVAILABILITY

LOCATION

- AUSTRALIA WIDE
- CYCLONIC

MATERIAL & GUAGE

- 0.42 BMT
- 0.48 BMT

- Nexalume™ AZ150
- NEXTEEL NextSTAR™
- NEXTEEL NextSTAR™ Ultra
- NEXTEEL NextSTAR™ Matt
- Heritage Galvanised

- Zincalume® AM125
- COLORBOND® Steel
- COLORBOND® Steel Ultra
- COLORBOND® Steel Matt

Revolution by Design Page

^{*} Visit revbydesign.com.au for CAD & Revit Files

NON-CYCLONIC SPAN TABLE

ROOF SHEETING NON-CYCLONIC SPAN TABLE

ROOF SPAN	0.42 BMT	0.48 BMT
Single Span	1300	2000
End Span	1750	2550
Internal Span	2350	2950
Unstiffened Overhang	200	300
Stiffened Overhang	500	600

WALL CLADDING NON-CYCLONIC SPAN TABLE

WALL SPAN	0.42 BMT	0.48 BMT
End Span	2000	2000
Internal Span	2400	3000
Unsupported Cantileaver	400	400

 $[\]ensuremath{^{*}}$ Rivet required, securing the overlap, 50mm from the end of the sheet

SPAN DEFINTIONS

DESIGN PARAMETERS

Region	А
Terrain Category	2

Height	10 metre	
Vz	45 m/sec	
q*u	1.215 kPa	
qs	0.821 kPa	
Cp.e	-0.65	
Ср	0.2	

Internal Bay	End Bay		
K ₁ = 1.0	K ₁ = 2.0		
∑C = -0.85v	∑C = -1.50		
Pu = 1.03 kPa	Pu = 1.82 kPa		
Ps = 0.70 kPa	Ps = 1.23 kPa		

NON-CYCLONIC SERVICEABILITY & STRENGTH

NON-CYCLONIC REVSPAN 0.42 BMT

Non-Cyclonic Wind Uplift Resistence - Service and Strength Limit State Design

End Span

Internal Span

Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)	Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)
900	1.68	4.31	1200	1.72	4.38
1200	1.36	3.45	1500	1.40	3.52
1500	1.12	2.78	1800	1.13	2.82
1800	0.91	2.24	2100	0.90	2.23

NON-CYCLONIC REVSPAN 0.48 BMT

Non-Cyclonic Wind Uplift Resistence - Service and Strength Limit State Design

End Span

Internal Span

Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)	Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)
900	2.40	7.24	1200	2.45	7.45
1200	2.01	5.35	1500	2.05	5.55
1500	1.71	3.89	1800	1.73	4.00
1800	1.46	2.69	2100	1.45	2.68

Revolution by Design Page | 1

RevSpec

RAINWATER TABLES

Maximum roof lengths (m) for drainage measured from ridge to gutter, no allowance has been made for penetrations or water diversion.

CROSS SECTIONAL AREA COMPARISON PER PROFILE

EFFECTIVE CROSS-SECTIONAL AREA (m²/m)					
Corrugated 16mm	1.249 x 10 ⁻³				
True Oak 21mm	2.520 x 10 ⁻³				
True Oak 'Super 5'	6.416 x 10 ⁻³				
Rev 5	11.85 x 10 ⁻³				
Rev 5 Plus	15.29 x 10 ⁻³				
RevKlip 700	13.91 x 10 ⁻³				
RevSpan 700	4.589 x 10 ⁻³				

REVSPAN - RAINFALL CAPACITY

RAINFALL CAPACITY (mm/hr)						
ROOF SLOPE (DEGREES)	150	200	250	300	350	400
2	68	52	42	35	33	27
5	92	70	56	47	41	36
7.5	106	80	65	54	48	42
10	118	89	72	61	53	45

RELATIVE DISCHARGE X 10-6m³ / s / m PER PROFILE							
SLOPE (DEGREES)	CORRUGATED 16mm	TRUE OAK 21mm	TRUE OAK 'SUPER 5'	REV 5	REV 5 PLUS	REVKLIP 700	REVSPAN 700
1	103.3	286.1	1227.1	4018.5	5932.9	4974.0	1034.3
2	146.1	404.6	1736.2	5682.9	8390.4	7034.3	1462.8
5	231.0	639.8	2754.2	8985.6	13266.5	11122.3	2312.9
10	326.8	904.8	3882.4	12707.5	18761.6	15729.3	3270.9
15	400.2	1108.1	4752.9	15563.5	22978.2	19264.5	4006.0

RAINWATER INTENSITY PER LOCATION

RAINFALL INTENSITY BY LOCATION (mm / hr)						
Average recurrance (years)						
Locality	Once in 20	Once in 100				
AUSTRALIAN CAPITAL TERRITORY						
Canberra	143	193				
NE	W SOUTH WAL	ES				
Albury	139	180				
Broken Hill	143	219				
Newcastle	226	316				
Sydney	200	262				
NOF	RTHERN TERRIT	ORY				
Alice Springs	166	239				
Darwin	233	274				
	QUEENSLAND					
Brisbane	234	305				
Cairns	229	278				
Mackay	250	316				
Townsville	235	300				

RAINFALL INTENSITY BY LOCATION (mm / hr)				
Average recurrance (years)				
Locality	Once in 20 Once in 100			
SC	OUTH AUSTRAL	IA		
Adelaide	125	187		
Gawler	110	158		
Mt Gambier	103	144		
Murray Bridge	120	178		
Yorketown	155	166		
	TASMANIA			
Hobart	85	116		
Launceston	90	121		
VICTORIA				
Ballarat	131	188		
Geelong	102	144		
Melbourne	132	187		
Mildura	142	218		

nce (years)
nce in 100
178
287
199
193
172

Revolution by Design Page

^{*}Rainwater Intensity Data obtained from the National Construction Code and the Bureau of Meterology.

MASSES

COLORBOND® STEEL AM100

	0.42 BMT	0.48 BMT	
kg/lm	3.36	3.76	
kg/m²	4.79	5.37	

NEXTEEL™ AM100

0.42 BMT		0.48 BMT	
kg/lm	3.36	3.76	
kg/m²	4.79	5.37	

HERITAGE GALVANISED

	0.42 BMT	
kg/lm	3.72	
kg/m²	5.31	

ZINCALUME® AM125

0.42 BMT		0.48 BMT	
kg/lm	3.22	3.66	
kg/m²	4.59	5.23	

NEXALUME™ AZ150

	0.42 BMT	0.48 BMT	
kg/lm	3.22	3.66	
kg/m²	4.59	5.23	

FASTENER SPACING NON-CYCLONIC

As per NCC ABCB Housing Provisions Table 7.2.5, maximum roof lengths (m) for drainage measured from ridge to gutter, no allowance has been made for penetrations or water diversion.

NOTE: Side lap fasteners are optional when using 5 fasteners per sheet, but are a requirement when only using 3 fasteners per sheet for valleys.

SUGGESTED NON-CYCLONIC PIERCE FIXING

SUGGESTED REVSPAN NON CYCLONIC PIERCE FIXING				
ТҮРЕ	FIXING TO STEEL (UP TO 1.9mm)	FIXING TO STEEL (2.0mm - 3.5mm)	FIXING TO METAL BATTENS (0.55 - 1.0mm)	FIXING TO TIMBER
Crest Fixed	M6.2-13×50mm Hex Head HiGrip w/- Seal	M6.2-13×50mm Hex Head HiGrip w/- Seal	M6-11×50mm Roof Zips	M6.2-13×65mm or 65mm T17 Timber
Valley Fixed	M6-11×25mm or 10-16×16mm Metal Teks Hex Head with Seal	M6.2-13×50mm Hex Head HiGrip w/- Seal	M6-11×25mm or 10-16×16mm Metal Teks Hex Head with Seal	M6-11×25mm Hex Head with Seal or T17×25mm Hex Head

NOTE: After exposure of cladding to extreme wind event, it is recommended that inspection to be performed to confirm cladding integrity.

INSULATION OPTIONS

Roof Blanket with a thickness up to 100mm can be installed under RevSpan without the requirement of a thermal spacer, the length of the fasteners may have to increase to compensate for the thickness of the insulation.

Noting the energy efficiency requirements of non-residential buildings may call for a thermal spacer on blanket of all sizes, this is governed by Section J of the National Construction Code.

Revolution by Design Page

STANDARD SPECIFICATION

COLORBOND® STEEL AM100

RELEVANT FOR COLORBOND® STEEL, COLORBOND® MATT STEEL PRODUCTS

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® Steel AM100 Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology - AS 1397:2021

COATING

AM100 = 100g per m² Minimum Metallic Coating Mass

PRIMER

Nominal 5µm Universal Corrosion Inhibitive Primer

PAINT

Nominal 20µm Finish Coat AS/NZS 2728:2013 Type 3

PROTECTIVE PLASTIC Nominal 50µm CORSTRIP® (if required)

COLORBOND® STEEL AM150

RELEVANT FOR COLORBOND® STEEL ULTRA PRODUCTS

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® AM150 Ultra Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology - AS 1397:2021

COATING

AM150 = 150g per m² Minimum Metallic Coating Mass

PRIMER

Nominal 5µm Universal Corrosion Inhibitive Primer

PAINT

Nominal 20µm Finish Coat AS/NZS 2728:2013 Type 3

PROTECTIVE PLASTIC Nominal 50µm CORSTRIP® (if required)

NEXTEEL™ AM100

RELEVANT FOR NEXTSTAR[™], NEXTSTAR[™] MATT STEEL PRODUCTS

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. NEXTEEL™ AM100 Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728 Type 4.

SUBSTRATE

Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING

AM100 = 100g per m² Minimum Metallic Coating Mass

PRIMER Nominal 5µm Polyester

PAINT Nominal 20µm Advanced Durability Polyester AS/NZS 2728 Type 4

PROTECTIVE PLASTIC Nominal 50µm NextSTRIP (if required)

NEXTEEL™ AM150

RELEVANT FOR NEXTSTAR™ ULTRA STEEL PRODUCTS

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. NEXTEEL™ AM150 Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728 Type 4.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING AM150 = 150g per m² Minimum Metallic Coating Mass

PRIMER Nominal 5µm Polyester

PAINT Nominal 20µm Advanced Durability Polyester AS/NZS 2728 Type 4

PROTECTIVE PLASTIC Nominal 50µm NextSTRIP (if required)

Revolution by Design Page | 5

STANDARD SPECIFICATION

ZINCALUME® AM125

Steel base thickness (0.42 or 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. Zincalume AM125 Substrate compliance AS 1397:2021, 125g per square metre minimum Metallic Coating Mass.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING AM125 = 125g per m² Minimum Metallic Coating Mass

NEXALUME™ AZ150

Steel base thickness (0.42 or 0.48) with a Hot-Dipped Aluminium Zinc Magnesium Alloy Coating. Nexalume AZ150 Substrate compliance AS 1397:2021, 150g per square metre minimum Metallic Coating Mass.

SUBSTRATE Hot-Dipped Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING AZ150 = 150g per m² Minimum Metallic Coating Mass

MARINE CLASSIFICATION

Class 1 (ISO 9223 Category C1): Rural areas far inland and remote from marine or industrial influence

Class 2 (ISO 9223 Category C2): Inland areas remote from the coast or areas of pollution

Class 3 (ISO 9223 Category C3): Coastal areas with low salinity

Class 4 (ISO 9223 Category C4): Severe marine which begins between 100m - 400m from breaking surf or 100m from calm marine.

Class 5 (ISO 9223 Category C5): Very severe marine: Close to breaking surf, typically 0 to 100m from breaking surf/exposed marine.

Class CX: Extreme (as per AS 4312:2019): Rare classification, reserved for offshore structures and the most severe sea conditions

ISO 9223:2012

 ${\tt Corrosion\ of\ metals\ and\ alloys\ --\ Corrosivity\ of\ atmospheres\ --\ Classification,\ determination\ and\ estimation.}$

Revolution by Design Page | 6