Rev 5

OVERVIEW

COVERAGE LENGTH	MINIMUM ROOF PITCH	RIB HEIGHT
760mm Nominal	2 Degrees	27mm

SPRING CURVING

2500mm Minimum Radius

PROFILE

- A = 762.0mm +/- 2mm
- B = 190.5mm
- C = 128.0mm
- D = 27.0mm
- E = 820.5mm

AVAILABILITY

LOCATION

- AUSTRALIA WIDE
- CYCLONIC

MATERIAL & GUAGE

- 0.35 BMT
- 0.42 BMT
- 0.48 BMT

- Zincalume® AM125
- COLORBOND® Steel
- COLORBOND® Steel Ultra
- COLORBOND® Steel Matt
- COLORBOND® Fencing

- Nexalume[™] AZ150
- NEXTEEL NextSTAR™
- NEXTEEL NextSTAR™ Ultra
- NEXTEEL NextSTAR™ Matt

Revolution by Design Page

^{*} Visit revbydesign.com.au for CAD & Revit Files

NON-CYCLONIC SPAN TABLE

ROOF SHEETING NON-CYCLONIC SPAN TABLE

ROOF SPAN	0.42 BMT	0.48 BMT
Single Span	1000	1700
End Span	1600	2200
Internal Span	2000	2750
Unstiffened Overhang	150	180
Stiffened Overhang	300	350

WALL CLADDING NON-CYCLONIC SPAN TABLE

WALL SPAN	0.42 BMT	0.48 BMT
End Span	1800	2050
Internal Span	2200	2800
Unsupported Cantileaver	300*	300*

^{*} Rivet required, securing the overlap, 50mm from the end of the sheet

SPAN DEFINTIONS

DESIGN PARAMETERS

1800

Region	А
Terrain Category	2

Height	10 metre
Vz	45 m/sec
q*u	1.215 kPa
qs	0.821 kPa
Cp.e	-0.65
Ср	0.2

Internal Bay	End Bay
$K_1 = 1.0$	$K_1 = 2.0$
∑C = -0.85v	∑C = -1.50
Pu = 1.03 kPa	Pu = 1.82 kPa
Ps = 0.70 kPa	Ps = 1.23 kPa

3.46

NON-CYCLONIC SERVICEABILITY & STRENGTH

1.24

NON-CYCLONIC REV 5 0.42 BMT Wind load Resistence (kPa) - Limit State Design Internal Span End Span **SERVICEABILITY** STRENGTH **SERVICEABILITY STRENGTH** Span (mm) Span (mm) (kPa) (kPa) (kPa) (kPa) 1200 900 3.27 6.07 3.13 5.91 1200 2.43 4.94 1500 2.43 4.93 1800 1.85 4.13 1500 1.77 4.06

3.36

2100

1.37

NON-CYCLONIC REV 5 0.48 BMT Wind load Resistence (kPa) - Limit State Design					
	End S	pan		Interr	nal Span
Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)	Span (mm)	SERVICEABILITY (kPa)	STRENGTH (kPa)
900	3.49	7.18	1200	3.39	7.10
1200	2.25	6.05	1500	2.34	6.14
1500	1.29	5.17	1800	1.48	5.36
1800	0.50	4.45	2100	0.76	4.69

Revolution by Design

RevSpec _____

RAINWATER TABLES

Maximum roof lengths (m) for drainage measured from ridge to gutter, no allowance has been made for penetrations or water diversion.

CROSS SECTIONAL AREA COMPARISON PER PROFILE

EFFECTIVE CROSS-SECTIONAL AREA (m^2/m) 1.249 x 10⁻³ Corrugated 16mm 2.520 x 10⁻³ True Oak 21mm 6.416 x 10⁻³ True Oak 'Super 5' 11.85 x 10 ⁻³ Rev 5 15.29 x 10⁻³ Rev 5 Plus 13.91 x 10⁻³ RevKlip 700 4.589 x 10⁻³ RevSpan 700

REV 5 - RAINFALL CAPACITY

Rev 5

RAINFALL CAPACITY (mm/hr)						
ROOF SLOPE (DEGREES)	150	200	250	300	350	400
2	149	118	91	80	69	60
3	184	136	110	93	84	72
5	210	164	135	112	101	84
7.5	240	180	151	122	109	90
10	281	208	170	139	117	102

RELATIVE DISCHARGE X 10-6m ³ / s / m PER PROFILE							
SLOPE (DEGREES)	CORRUGATED 16mm	TRUE OAK 21mm	TRUE OAK 'SUPER 5'	REV 5	REV 5 PLUS	REVKLIP 700	REVSPAN 700
1	103.3	286.1	1227.1	4018.5	5932.9	4974.0	1034.3
2	146.1	404.6	1736.2	5682.9	8390.4	7034.3	1462.8
5	231.0	639.8	2754.2	8985.6	13266.5	11122.3	2312.9
10	326.8	904.8	3882.4	12707.5	18761.6	15729.3	3270.9
15	400.2	1108.1	4752.9	15563.5	22978.2	19264.5	4006.0

RAINWATER INTENSITY PER LOCATION

RAINFALL INTENSITY BY LOCATION (mm / hr)					
	Average recurrance (years)				
Locality	Once in 20	Once in 100			
AUSTRAL	IAN CAPITAL TE	RRITORY			
Canberra	143	193			
NE	W SOUTH WAL	ES			
Albury	139	180			
Broken Hill	143	219			
Newcastle	226	316			
Sydney	200	262			
NOF	RTHERN TERRIT	ORY			
Alice Springs	166	239			
Darwin	233	274			
	QUEENSLAND				
Brisbane	234	305			
Cairns	229	278			
Mackay	250	316			
Townsville	235	300			

RAINFALL INTENSITY BY LOCATION (mm / hr)					
	Average recurrance (years)				
Locality	Once in 20	Once in 100			
S	OUTH AUSTRAL	IA			
Adelaide	125	187			
Gawler	110	158			
Mt Gambier	103	144			
Murray Bridge	120	178			
Yorketown	155	166			
	TASMANIA				
Hobart	85	116			
Launceston	90	121			
	VICTORIA				
Ballarat	131	188			
Geelong	102	144			
Melbourne	132	187			
Mildura	142	218			

RAINFALL INTENSITY BY LOCATION (mm / hr)				
Average recurrance (years)				
Locality	Once in 20	Once in 100		
WESTERN AUSTRALIA				
Albany	125	178		
Broome	232	287		
Bunbury	147 199			
Geraldton	138 193			
Perth	130	172		

Revolution by Design Page | 3

^{*}Rainwater Intensity Data obtained from the National Construction Code and the Bureau of Meterology.

MASSES

COLORBOND® STEEL AM100

	0.35 BMT	0.42 BMT	0.48 BMT
kg/lm	2.79	3.36	3.76
kg/m²	3.67	4.40	4.93

ZINCALUME® AM125

	0.35 BMT		0.48 BMT
kg/lm	2.70	3.22	3.66
kg/m²	3.55	4.22	4.81

NEXTEEL™ AM100

	0.35 BMT	0.42 BMT	0.48 BMT
kg/lm	2.79	3.36	3.76
kg/m²	3.67	4.40	4.93

NEXALUME™ AZ150

0.35 BMT		0.42 BMT	0.48 BMT	
kg/lm	2.70	3.22	3.66	
kg/m²	3.55	4.22	4.81	

FASTENER SPACING NON-CYCLONIC

As per NCC ABCB Housing Provisions Table 7.2.5, maximum roof lengths (m) for drainage measured from ridge to gutter, no allowance has been made for penetrations or water diversion.

NOTE: Side lap fasteners are optional when using 5 fasteners per sheet, but are a requirement when only using 3 fasteners per sheet for valleys.

SUGGESTED NON-CYCLONIC PIERCE FIXING

SUGGESTED REV 5 NON CYCLONIC PIERCE FIXING				
ТҮРЕ	FIXING TO STEEL (UP TO 1.9mm)	FIXING TO STEEL (2.0mm - 3.5mm)	FIXING TO METAL BATTENS (0.55 - 1.0mm)	FIXING TO TIMBER
Crest Fixed	12-14×35mm Metal Teks	Self Drilling 12×55mm Hex Head HiGrip w/- Seal	M6-11×50mm Roof Zips	M6-11×50mm Roof Zips
Valley Fixed	M6-11×25mm or 10-16×16mm Metal Teks Hex Head with Seal	Self Drilling 12×55mm Hex Head HiGrip w/- Seal	M6-11×25mm or 10-16×16mm Metal Teks Hex Head with Seal	M6-11×25mm Hex Head with Seal or T17×25mm Hex Head

NOTE: After exposure of cladding to extreme wind event, it is recommended that inspection to be performed to confirm cladding integrity.

INSULATION OPTIONS

Roof Blanket with a thickness up to 100mm can be installed under Rev 5 without the requirement of a thermal spacer, the length of the fasteners may have to increase to compensate for the thickness of the insulation.

Noting the energy efficiency requirements of non-residential buildings may call for a thermal spacer on blanket of all sizes, this is governed by Section J of the National Construction Code.

Revolution by Design Page |

RevSpec

STANDARD SPECIFICATION

COLORBOND® STEEL AM100

RELEVANT FOR COLORBOND® STEEL, COLORBOND® MATT STEEL PRODUCTS

Steel base thickness (0.35, 0.42, 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® Steel AM100 Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology - AS 1397:2021 SUBSTRATE

AM100 = 100g per m² Minimum Metallic Coating Mass COATING Nominal 5µm Universal Corrosion Inhibitive Primer **PRIMER** Nominal 20µm Finish Coat AS/NZS 2728:2013 Type 3 PAINT

Nominal 50µm CORSTRIP® (if required) PROTECTIVE PLASTIC

COLORBOND® STEEL AM150

RELEVANT FOR COLORBOND® STEEL ULTRA PRODUCTS

Steel base thickness (0.35, 0.42, 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® AM150 Ultra Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology - AS 1397:2021 SUBSTRATE

AM150 = 150g per m² Minimum Metallic Coating Mass COATING Nominal 5µm Universal Corrosion Inhibitive Primer **PRIMER** Nominal 20µm Finish Coat AS/NZS 2728:2013 Type 3 **PAINT**

Nominal 50µm CORSTRIP® (if required) PROTECTIVE PLASTIC

NEXTEEL™ AM100

RELEVANT FOR NEXTSTAR™, NEXTSTAR™ MATT STEEL PRODUCTS

Steel base thickness (0.35, 0.42, 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. NEXTEEL™ AM100 Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728 Type 4.

Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021 SUBSTRATE AM100 = 100g per m² Minimum Metallic Coating Mass COATING

Nominal 5µm Polyester **PRIMER**

Nominal 20µm Advanced Durability Polyester AS/NZS 2728 Type 4 **PAINT**

PROTECTIVE PLASTIC Nominal 50µm NextSTRIP (if required)

NEXTEEL™ AM150

RELEVANT FOR NEXTSTAR™ ULTRA STEEL PRODUCTS

Steel base thickness (0.35, 0.42, 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. NEXTEEL™ AM150 Steel Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728 Type 4.

Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021 SUBSTRATE AM150 = 150g per m² Minimum Metallic Coating Mass

COATING

PRIMER Nominal 5µm Polyester

Nominal 20µm Advanced Durability Polyester AS/NZS 2728 Type 4 PAINT

Nominal 50µm NextSTRIP (if required) PROTECTIVE PLASTIC

Page | 5 Revolution by Design

RevSpec

STANDARD SPECIFICATION

COLORBOND® STEEL AM70

RELEVANT FOR COLORBOND® STEEL FENCING PRODUCTS

Steel base thickness (0.35, 0.42, 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Coating. COLORBOND® Steel AM70 Substrate compliance AS 1397:2021, and Paint Finish Substrate compliance AS/NZS 2728:2013 Type 3.

SUBSTRATE Aluminium Zinc Magnesium Alloy Coated Steel with Activate® Technology Substrate (Fence Panels)

or Zinc-Coated Steel Substrate (Post & Rails) - AS 1397:2021

 COATING
 AM70 = 70g per m² Minimum Metallic Coating Mass

 PRIMER
 Nominal 5μm Universal Corrosion Inhibitive Primer

 PAINT
 Nominal 20μm Finish Coat AS/NZS 2728:2013 Type 3

PROTECTIVE PLASTIC Nominal 50µm CORSTRIP® (if required)

ZINCALUME® AM125

Steel base thickness (0.35, 0.42, 0.48) with an Aluminium Zinc Magnesium Alloy Coated Steel Coating. Zincalume AM125 Substrate compliance AS 1397:2021, 125g per square metre minimum Metallic Coating Mass.

SUBSTRATE

Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING

AM125 = 125g per m² Minimum Metallic Coating Mass

NEXALUME™ AZ150

Steel base thickness (0.35, 0.42, 0.48) with a Hot-Dipped Aluminium Zinc Magnesium Alloy Coating. Nexalume AZ150 Substrate compliance AS 1397:2021, 150g per square metre minimum Metallic Coating Mass.

SUBSTRATE Hot-Dipped Aluminium Zinc Magnesium Alloy Coated Steel - AS 1397:2021

COATING AZ150 = 150g per m² Minimum Metallic Coating Mass

MARINE CLASSIFICATION

Class 1 (ISO 9223 Category C1): Rural areas far inland and remote from marine or industrial influence

Class 2 (ISO 9223 Category C2): Inland areas remote from the coast or areas of pollution

Class 3 (ISO 9223 Category C3): Coastal areas with low salinity

Class 4 (ISO 9223 Category C4): Severe marine which begins between 100m - 400m from breaking surf or 100m from calm marine.

Class 5 (ISO 9223 Category C5): Very severe marine: Close to breaking surf, typically 0 to 100m from breaking surf/exposed marine.

Class CX: Extreme (as per AS 4312:2019): Rare classification, reserved for offshore structures and the most severe sea conditions

ISO 9223:2012

Corrosion of metals and alloys — Corrosivity of atmospheres — Classification, determination and estimation.

Revolution by Design Page | 6